Restricted STAT5 activation dictates appropriate thymic B versus T cell lineage commitment.
نویسندگان
چکیده
The molecular mechanisms regulating lymphocyte lineage commitment remain poorly characterized. To explore the role of the IL7R in this process, we generated transgenic mice that express a constitutively active form of STAT5 (STAT5b-CA), a key downstream IL7R effector, throughout lymphocyte development. STAT5b-CA mice exhibit a 40-fold increase in pro-B cells in the thymus. As documented by BrdU labeling studies, this increase is not due to enhanced B cell proliferation. Thymic pro-B cells in STAT5b-CA mice show a modest increase in cell survival ( approximately 4-fold), which correlates with bcl-x(L) expression. However, bcl-x(L) transgenic mice do not show increases in thymic B cell numbers. Thus, STAT5-dependent bcl-x(L) up-regulation and enhanced B cell survival are not sufficient to drive the thymic B cell development observed in STAT5b-CA mice. Importantly, thymic pro-B cells in STAT5b-CA mice are derived from early T cell progenitors (ETPs), suggesting that STAT5 acts by altering ETP lineage commitment. Supporting this hypothesis, STAT5 binds to the pax5 promoter in ETPs from STAT5b-CA mice and induces pax5, a master regulator of B cell development. Conversely, STAT5b-CA mice exhibit a decrease in the DN1b subset of ETPs, demonstrating that STAT5 activation inhibits early T cell differentiation or lineage commitment. On the basis of these findings, we propose that the observed expression of the IL-7R on common lymphoid progenitors, but not ETPs, results in differential STAT5 signaling within these distinct progenitor populations and thus helps ensure appropriate development of B cells and T cells in the bone marrow and thymic environments, respectively.
منابع مشابه
PTPN2 regulates T cell lineage commitment and αβ versus γδ specification
In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αβ T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR...
متن کاملStrict Major Histocompatibility Complex Molecule Class-Specific Binding by Co-Receptors Enforces MHC-Restricted αβ TCR Recognition during T Lineage Subset Commitment
Since the discovery of co-receptor dependent αβTCR recognition, considerable effort has been spent on elucidating the basis of CD4 and CD8 lineage commitment in the thymus. The latter is responsible for generating mature CD4 helper and CD8αβ cytotoxic T cell subsets. Although CD4(+) and CD8(+) T cell recognition of peptide antigens is known to be MHC class II- and MHC class I-restricted, respec...
متن کاملPax5 determines B- versus T-cell fate and does not block early myeloid-lineage development.
Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in ...
متن کاملEntry into the thymic microenvironment triggers Notch activation in the earliest migrant T cell progenitors.
Interactions between T cell precursors and thymic stromal cells are essential during thymocyte development. However, the role of the thymus in initial commitment of lymphoid progenitors to the T lineage remains controversial, with data providing evidence for both extra- and intrathymic commitment mechanisms. In this context, it is clear that Notch1 is an important mediator during initiation of ...
متن کاملIdentification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes
Bipotent progenitors for T and natural killer (NK) lymphocytes are thought to exist among early precursor thymocytes. The identification and functional properties of such a progenitor population remain undefined. We report the identification of a novel developmental stage during fetal thymic ontogeny that delineates a population of T/NK-committed progenitors (NK1. 1(+)/CD117(+)/CD44(+)/CD25(-))...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 174 12 شماره
صفحات -
تاریخ انتشار 2005